参考文献 Reference


[Pearl] J. Pearl. Causility : models, reasoning, and inference.

[Shpitser2006] S. Shpitser and J. Pearl. Identification of Joint Interventional Distributions in Recursive Semi-Markovian Causal Models.

[Neal2020] B. Neal. Introduction to Causal Inference.

[Funk2010] M. Funk, et al. Doubly Robust Estimation of Causal Effects.

[Chern2016] V. Chernozhukov, et al. Double Machine Learning for Treatment and Causal Parameters. arXiv:1608.00060.

[Athey2015] S. Athey and G. Imbens. Recursive Partitioning for Heterogeneous Causal Effects. arXiv: 1504.01132.

[Schuler] A. Schuler, et al. A comparison of methods for model selection when estimating individual treatment effects. arXiv:1804.05146.

[Nie] X. Nie, et al. Quasi-Oracle estimation of heterogeneous treatment effects. arXiv: 1712.04912.

[Hartford] J. Hartford, et al. Deep IV: A Flexible Approach for Counterfactual Prediction. ICML 2017.

[Newey2002] W. Newey and J. Powell. Instrumental Variable Estimation of Nonparametric Models. Econometrica 71, no. 5 (2003): 1565–78.

[Kunzel2019] S. Kunzel2019, et al. Meta-Learners for Estimating Heterogeneous Treatment Effects using Machine Learning.

[Angrist1996] J. Angrist, et al. Identification of causal effects using instrumental variables. Journal of the American Statistical Association.

[Athey2020] S. Athey and S. Wager. Policy Learning with Observational Data. arXiv: 1702.02896.

[Spirtes2001] P. Spirtes, et al. Causation, Prediction, and Search.

[Zheng2018] X. Zheng, et al. DAGs with NO TEARS: Continuous Optimization for Structure Learning. arXiv: 1803.01422.